Seminar: Control Flow Integrity based Security

Report on: Enforcing Forward-Edge Control-Flow
Integrity in GCC & LLVM

Patrick Funke

Institute of Informatics
Technische Universitat Miinchen, Germany
July 10, 2016



Abstract. Since the widespread adoption of stack protection mecha-
nisms, attacks on software’s control flow focused more and more on the
forward edges. To cope with this issue, the authors present three tools,
two of which harden the output binary and the third one is a tool for
developers to prevent vulnerabilities. They implemented a C++ vtable
verification for GCC, an indirect function call checker for LLVM and
an addition to LLVM’s UBSan. Their new mechanisms improved on the
performance overhead that prior work and put great effort into creat-
ing usable tools for the real world. Providing a realistic attack model
they were able to bring a certain level of security to every day software.
More recent work developed their ideas further which makes these tools
a starting point for current approaches and improvements on control flow
integrity.

1 Introduction

Securing the control-flow integrity (CFI) is a rather new approach to further
improving the safety of software, especially of programs like webbrowsers which
are complex, widespread and often running with high privileges. No software
is free of errors and certain bugs (e. g. use-after-free, buffer-overflows) can be
abused in such a way that the program’s control-flow is altered. Attackers use
these possibilities as an entry point for further taking over an application. Thus,
different approaches to hardening that kind of attacks emerged over time.

There are three types of instructions that alter the control-flow and there-
fore are in the focus of research. The first are the return addresses, stored on the
stack. The other two are virtual and indirect function calls, which both operate
on the heap. They are also referred to as forward-edges in the control flow, as
they are a forward jump into another function while the return after executing
a piece of code is analogously called a backward-edge.

Protection of stack data and return addresses is a widespread method for
increasing computer security - in scientific contexts as well as in production en-
vironments, because most mainstream compilers offer such tools. As a result,
recent attacks exploit heap-based memory corruption bugs and compromise the
control-flow integrity (CFI). Protecting the program-control data on the heap
however appears to be a complex problem and is a current research subject. The
authors recognize that this kind of CFI enforcement has thus not been adopted
in mainstream compilers. Most approaches are either ad-hoc mechanisms, binary
rewriting frameworks or even only experimental, also incremental compilation
and dynamic loading are often impossible. As a result, using this kind of tools
in production compilers is not practicable.

The authors present two mechanisms they implemented to protect the CFI
while not restricting compiler optimizations, operation modes, or features like
Position-Independent Code (PIC) and C++ exceptions. Also they do not re-



strict the execuction environment of the final binary such as dynamically-loaded
libraries or Address Space Layout Randomization (ASLR). The result are fully
functional tools for the respective production compilers that are shown to be
practical and at the time of the publication very efficient. Also, they describe
and resolve the challenges that arise when developing a CFI solution usable in
a real-world environment.

In their paper, the authors focus on verifying the targets of forward-edges
of indirect control transfers at different levels of precision, which depends on
target’s type and applied analysis. In C++, virtual calls make up the largest
share of indirect control transfers, so the first approach protects these virtual
calls by verifying the vtables. Evaluation of the binary compiled with the CFI
tools showed that 95% to 99.8% of all indirect function calls could be protected,
depending on the tool. The performance penalty ranges from 1% to 8.7%, eval-
uated with the SPEC CPU2006 benchmark suite and web browser benchmarks,
all performed on the recompiled version of the Chromium browser.

At the time, the presented tools compared well to other research prototypes
in terms of performance. Although the provided level of security is not as good as
from these other prototypes, they still provide strong guarantees for the defined
realistic attack model. Concurrent other tools like MIP [7] and CCFIR, [12] have
a significantly higher overhead or must sacrifice practicability to achieve a better
performance, like SafeDispatch [6].

2 Attacks and Compiler-based Defenses

Altering the control flow of software is a powerful opportunity for attackers to
achieve their goals. Escpecially complex software running with high privileges
like web browsers is a common target, as the attacker can alter the control
flow while having a lot of privileges on the machine. Typically, these attacks
exploit vulnerabilities at a low level which brings importance to techniques such
as memory protection, ASLR and fine-grained type-safety guarantees of high-
level languages. Modern compilers, operating systems and runtime libraries offer
these and for instance, set executable code in memory as not writable or verify
stack integrity by checking whether secret values, commonly referred to as stack
canaries, have been modified. All of these techniques are widespread and thus,
stack-based attacks have become more rare. Heap-based attacks on the other
hand have increased, as the heap remained hard to protect. Control flow data
on the heap, expecially C++ vtable pointers or function pointers are a com-
mon target. Corresponding attacks are known as return-oriented programming
or "return-to-libc” as an attacker might try to return to a place in the code that
was not intended and can be reused for malicious activity.

As a solution, the authors created two tools for mainstream compilers that
help protect the control flow integrity by hardening the resulting binaries against



heap-based attacks. They focus especially on the forward-edges of the control
flow, namely function pointers and vtable pointers. This is done by restricting
these pointer targets to a set of valid targets which are determined by the com-
piler. A third tool is presented for improving the development of software, by
analysing it and trying to find possible control flow violations before publishing
an application. The mechanisms have been implemented for the GCC and LLVM
compilers and have - apart from some differences in security and implementation
details - in common that they:

— add new, read-only metadata to compilation modules to represent
aspects of the programs static CFG;

— add machine code for fast integrity checks before indirect forward-
edge, control-flow instructions;

— optionally divert execution to code that performs slower integrity
checks in certain complex cases;

— call out to error handlers in the case of failures; and

— may employ runtime library routines to handle important excep-
tional events such as dynamic loading.

Also, they follow a very specific attack model for their defenses. The first
assumption, like in comparable work, is that all writable program data may be
corrupted at any time. On the contrary, read-only data, the stack and thread
register state are assumed to be safe and may not be modified. For this model
to be applicable, other mechanisms - especially stack defenses must be in place.
Otherwise, the presented software can be bypassed. While other work tries not
to rely on the trustworthiness of the used compiler, the authors chose to make
use of the compiler toolchains abilities to reduce complexity, increase portabil-
ity and particularly allow optimizations. Although they note the importance of
questioning the trust in a compiler, they do not see concrete benefits of distrust
in the compiler when developing a compiler-based CFI mechanism.

The result were efficient and most notably usable tools for production envi-
ronments. At the time the report was written, there was a number of approaches
to CFI available, but they did not provide the usability one would expect from
a production compiler. Other work struggled with incremental compilation and
dynamic libraries as well as very high performance overheads. To cope with these
issues, more coarse-grained techniques had been presented [7] [12], but they came
at cost of less security. By properly integrating their mechanisms into compil-
ers and putting their focus on forward-edges only, the performance overhead
improved a lot on prior, different approaches while providing a defined level of
security.

2.1 Related Work

Up until the paper was published, many very different approaches for enforcing
CFI have been described and implemented, including XFI [4], BGI [2], Hyper-
Safe [9], CFI4-Sandboxing [11], MoCFTI [3], CCFIR [12], Strato [10], bin-CFI [13],



MIP [7] and SafeDispatch [6]. Many only enforce coarse-grained CFI which has
better performance but is less secure. Furthermore, a part of these defenses is
not compiler-based but uses binary rewriting. Other compiler-based defenses are
most importantly HyperSafe, MIP, CFI4+Sandboxing and SafeDispatch, with the
latter being the most similar concurrent approach. It adds runtime CFI checks
and reduces runtime overhead by profile-driven, whole-program optimization.
At every call site, vtable pointers are verified and the address in the vtable is
checked to be a valid method for the corresponding call site. The major draw-
back of SafeDispatch however is the impossibility of separate compilation and
dynamic libraries which makes it very impractical.

VTV, one of the tools the authors developed and implemented, was the
starting point for additional work and its protection scheme was widely adopted.
VTV has been recently refined by Haller et al. [5] to further improve its strictness
by changing the decision policies and therefore increasing security. The idea
behind VTV has also been used in VTable Interleaving [1] which implements
similar validity checking for vtable pointers by laying out the vtables in a manner
that a simple range check of the pointer suffices to determine whether it is valid
or not. As a result, the performance overhead for this similar level of security is
very low compared to the original VI'V.

3 VTV: Virtual-Table Verification

The first mechanism the authors present is VI'V which is short for vtable verifi-
cation. It’s a CFI tool implemented for the GCC C++ compiler. It only verifies
virtual calls, but not other types of indirect control flow. The authors claim vir-
tual calls to be the most common kind of indirect calls which makes their work
applicable for this most attractive target.

3.1 Problem Description

Virtual function tables are the way of implementing polymorphism in C++4. If
a base class and a child class declare the same function, they are declared as
virtual functions. Every class has a corresponding vtable that stores pointers to
the actual implementation of every function an instance of that class provides.
At runtime, when such a virtual function is called, the program uses this vtable
to get the address of the correct implementation and jumps to it. Contrary to the
actual vtables, which are placed in read-only memory, the objects referring to
these vtables are found on the heap. By exploiting use-after-free bugs, the vtable
pointer can be altered and lead to an invalid vtable, either reusing an exisiting
one that contains functions which are not intended at this point or creating a
new vtable, although this may be hardened by additional mechanisms like DEP
(Data Execution Prevention) in place. When such object functions are then used,
the attacker’s code is executed.



3.2 Overview and details of VI'V

VTV inserts checks at every call site of a virtual function. Before executing the
call, the pointer is verified to be in the set of either the VTable for an object’s
static type or one of its descendant classes. If that’s not case, the call is not
executed at all. This is done by changing the intermediate representation code,
which is an interstage between the original source code and the machine in-
structions, for every virtual call. VTV inserts a verification call after retrieving
the vtable pointer value out of the object, ensuring that the value that’s being
checked is not changed between the retrieval and the verification call. The ver-
ifier function checks the objects vtable pointer against the set of valid vtables
provided by the compiler. It returns the correct pointer from the vtable if ev-
erything is fine and calls a failure function that reports an error and aborts the
execution immediately otherwise.

An important improvement to earlier work is the possibility of incremental
compilation and dynamic loading, which is often denied in other approaches.
Prototypes and primarily academical work often does not take care of these
dealbreakers for real world applications. When allowing them, the entire class
hierarchy of the program is not available for the compiler, as parts of it may
reside in precompiled libraries and modules. As a solution, VTV consists of a
compiler piece and a runtime library called libvtv, which are both part of GCC.
In addition to the insertion of verification calls, VTV collects information about
the class hierarchy and the vtables to supply generator functions that build the
complete sets of valid vtable pointers at runtime, which is the key to allowing
dynamic loading. A pointer to the set of valid vtable pointers is stored in a
vtable-map variable for every polymorphic class which is then passed on to the
verification function. The vtable-map variables must be set to the pointer of
the corresponding vtable set before any virtual call is performed, so they are
initialized by special init functions that run before other standard initialization
functions which ensures that the necessary data is in place when the first virtual
call is made.

Although the vtable-map variables and generated vtable-pointer sets should
be read-only during runtime, they must be writable for some time as they are
built by generator functions when the program starts or when a library is dy-
namically loaded. Although the authors do not describe such an attack, the
mechanism is obvioulsy vulnerable during this time, so it should be as short
as possible. Based on mmap, the authors created their own memory allocation
scheme for the vtable-pointer sets which makes finding all these sets in memory
easier for VI'V. Vtable-map variables are stored in a special section in the exe-
cutable that is page-aligned and padded with zeros up to the end of the memory
page to prevent other data from being on that same page. For an update of
the vtable-map variables and vtable pointer sets VIV makes all correspond-
ing pages writable, while using pthread mutexes to avoid interference of other
threads. After the update, all pages are set back to read-only.



3.3 Practical Experience with VIV

When trying to achieve global unique vtable-map variables for every class, the
authors realized that in some use cases the compiler is not able to ensure this
global visibility; resulting in multiple instances of a vtable-map variable. These
different instances might represent different and incomplete sets of valid vtables
which leads to incorrect aborts. To work around this issue, the authors added
a mechanism to keep track wheter VIV has already seen another instance of
the vtable-map variable for a given class. Only if not, VIV will create a new
vtable-map.

Another issue is the mixing of verified and non-verified code. Especially when
using external libraries or plugins that are not verified with VIV, verification
errors occurred. To deal with these, a replaceable failure function is called when
the usual verification function failed. Programmers may write these replacement
functions as a kind of whitelist for non-verified segments. When a call check fails
in the first place, this replacement function goes through an array of allowed
address ranges. If the call target is found there, execution continues. Because
libraries can be dynamically loaded, the whitelist arrays have to be built when
such a library is loaded and before it is called for the first time. The authors do
not describe how much additional work for the programmer is necessary when
using these replacement functions for a large application.

3.4 Alternatives & Enhancements for VIV

As the VTV’s performance was rather good in their first implementation, the
authors did not put effort into improving it. But they recognize various points of
possible optimization such as partial inlining of the verification call sequences,
because the call overhead makes up a big part of the performance penalty. Secure
methods for caching and reusing frequently verified values could be another
starting point for optimizations. They also describe the possibility of altering
other toolchain elements, apart from the compiler, to sort out ordering issues
between the generator functions for vtable-pointer sets and functions performing
virtual calls.

4 IFCC: Indirect Function-Call Checks

Similar to VTV, Indirect Function-Call Checks (IFCC) is a CFI tool the authors
implemented for the LLVM compiler. It operates on the intermediate representa-
tion during link-time optimization and does not only protect vtables, which are
specific to C++, but all indirect calls. By generating jump tables for indirect-
call targets and transforming the function pointers in a manner that they now
point to a jump table IFCC ensures, that a program may only jump to valid
targets. A function pointer not pointing into the appropriate table is considered
a CFI violation and IFCC will try to force the function pointer into the correct



jump table. Like VTV’s vtable-pointer sets, IFCC builds sets of valid function
pointers, represented by jump tables.

Because every indirect call is checked against a jump table, IFCC reduces the
set of possible jump targets significantly and thus limits an attackers options.
A jump table entry is merely an aligned jump instruction to a function, placed
in read-only memory. By padding the table to a power-of-two size any aligned
jump to the padding will cause a crash. The power-of-two size of the tables allows
IFCC to use a mask to force function pointers into the right set on every call site.

Similar to VTV, IFCC secures indirect function calls by building so called
jump tables, where valid targets for these indirect calls are stored. On the call
site, the pointer is replaced by the corresponding pointer to the jump table where
the valid function pointers are stored. By padding the jump tables with trap in-
structions and transforming the pointers in a corresponding way, incorrect jumps
will cause the program to crash. Pointers to functions that have their address
taken, are transformed to pointers to a jump table entry. Furthermore, indirect
calls are replaced with a check against the function-pointer set corresponding
to the call site. The checks are performed using a mask and a base address, in
a way that a manipulated pointer will target a trap instruction or at least a
target that is inside the valid set. IFCC offers different levels of precision for the
function-pointer sets, because the most precise imaginable (one function-pointer
set per function type signature) might fail in real world applications as they do
not always respect function pointer types. The authors present two methods for
assembling function pointer sets, one (called Single) putting all the functions in a
single set and the other one (called Arity) assigning functions to a set according
to the number of arguments passed to the indirect call. In theory, the method to
construct the function pointer set can be chosen individually for each function,
as long as there is exactly one table per call site. This restriction should be met
regardless of the analysis technique.

4.1 Practical Experience with IFCC

External code poses a problem for IFCC, too, because a function that was not
declared or defined during link-time optimization will not be found in the jump
table and therefore recognized as a CFI violation. This happens for example with
JIT code (e.g. JavaScript engines) that can generate functions dynamically, ex-
ternal functions returning external function pointers and of course function that
is passed to an external library and then called there with external function
pointers. Depending on the kind of code, the amount of these false positives
varies greatly from extremely frequent with JIT-generated code to very rare
when working with signal handlers for instance.

To cope with this issue, the authors introduced a fixed-size, writable array in
the beginning of each jump table. IFCC then rewrites calls to external functions
that return function pointers and saves the pointer into the writable array if it



is not already stored there; the replacement function then returns a pointer to
this array entry. When the array is full, the program halts with an error. With
this technique, function pointers from external code are turned into jump table
entries, the only drawback being the addition of a few writable function pointers.
By further optimizations, this memory could also be protected. Although the
authors describe these optimizations, they did not implement them for their
prototype because of time constraints.

4.2 Annotations

For further improving usability in production environments, the authors imple-
mented a second version of IFCC that is intended to become a part of LLVM.
Instead of forcing the program’s contol flow into a crash or towards any pointer
in the valid set if the check fails, they pass this pointer to a custom failure
function which handles the error, similar to VTV. Additionally, annotations and
a simple dataflow analysis have been added to the implementation in order to
improve detection and handling of problems.

5 FSan: Indirect-Call-Check Analysis

The third tool the authors developed does not directly harden software, it is a
tool intended for development. The idea behind such a tool is the trade-off be-
tween security and correctness of the output. If a tool is uncertain about whether
the control flow is correct or not, it has to give in and skip this instruction; if
it inserts a check nonetheless, the result is broken because a correct instruction
has been disabled. Thus it appears that code with less uncertainties for a CFI
tool increases its security.

FSan is an optional indirect call checker and has been added to Clang’s un-
defined behavior sanitizer (UBSan) in version 3.4 which is designed to catch a
variation of undefined behaviors - not only in a control-flow context [8]. The tool
is designed for improving applications by checking at runtime whether or not
the function types of caller and callee match and thus detects CFI violation for
indirect function calls. As defined in the C++ standard, the outcome of calling
a function through a pointer to a function type is not defined, given that the
types do not match which may lead to a security issue. FSan works with exe-
cutable metadata prepended to every function. On an indirect call site, the first
four bytes from the function pointer are loaded and compared to the expected
signature, followed by checking the Run-Time Type Information (RTTI) pointer
from the next 4 or 8 bytes if the first check was succesful. In case one of these
checks fails, an error message is printed.

The paper notes that the check in its present form only works for C++ and
is not as accurate as VIV, because it only validates the function’s type - not
the programs control flow graph.



5.1 Practical Experience with FSan

When recompiling the Chromium web browser with FSan enabled, a variety of
undefined-behavior reports emerged. With the two main kinds of these problems
have a simple fix, some problems could be fixed by refactoring a part of the Skia
graphics library. The remaining problems require more dedicated work to fix;
they are more widespread and a fix is not as obvious.

6 Security Analysis

While other papers seemingly try to beautify the already difficult to quantify
security analysis with picky choices in terms of the software they apply their
tools to, the authors recognized that it makes sense to test CFI mechanisms
with complex, real world software that may be a valuable target. The chromium
web browser is such an application. By recompiling it with VTV and GCC, IFCC
and Clang (LLVM) it was possible to compare the performance and security to
the unhardened version. Notably, they evaluated the whole final output binary
and not only the output of the single pass their tool operates in which takes
later optimizations and the linking into account.

By calculating the Average Indirect-target Reduction (AIR) introduced by
Zhang and Sekar [13] they quantified their results. The AIR metric is calculated

as follows: .

1 T
AIR = — ;(1 <) (1)
n: number of indirect control-transfer instructions (indirect calls, jumps, and
returns), Ti: number of instructions the ith indirect control transfer instruction
could target after applying a CFI technique, S: size of the binary
They limited the number of indirect control-transfer instructions to forward-
edges in the control flow only. This excludes returns since they are assumed
to be protected by stack-based defenses and not subject of the research. This
modified AIR metric is called fAIR. Although it is a notable effort to apply
some metric - AIR still remains to be one of the more commonly used - it’s rele-
vance is questionable. Even if the number of allowed indirect targets is very low,
which leads to a high AIR value, this limited set of possibilities may still contain
the one that is needed in order to perform an attack. How valuable or usable
an instruction is for the possible attacker is not taken into account at all, so
when interpreting the resulting numbers this limitation has to be kept in mind.
Even a CFI technique with a very high AIR value can produce a final binary
as vulnerable as before, because the dangerous call target has not been detected.

VTV protects 95.5% of Chromium’s indirect control transfer instructions. Of
these targets, about 10% may be spilled to the stack. Since the presented method
does not take care of the already widely protected stack, this does not bring up a
security flaw in the VTV system. When using VTV in a production environment,
these additional protections must definitely be applied. IFCC performs even



better on Chromium’s codebase and is able to protect 99.8% of the instructions
in question. Here, about 18% of the call targets may be spilled to the stack.
In both cases, most of the unprotected targets stem from C libraries or C-style
callbacks. The ROP-gadget count is another common measure, but as VI'V and
IFCC do not take care of backward edges (returns) at all, it is obsolete.

7 Performance Measurements and Results

VTV’s and IFCC’s performance were measured by recompiling the Chromium
web browser with these additions and comparing its performance in benchmarks
to the insecure version. The authors used the SPEC CPU2006 benchmark suite
and the Dromaeo, SunSpider and Octane browser benchmarks. CPU turbo mode
and ASLR have been turned off on the testing machine because they produced
too much variation in the results. The Chromium web browser was chosen for
its widespread real world usage and complexity, which makes the results more
applicable to other software. In particular, it contains hundreds of thousands
of virtual calls, links many non-verifiable third-party libraries and extensively
uses dynamic library loading. All together Chromium represents real life attack
targets very well.

7.1 VTV Performance

A subset of these benchmarks which execute a lot of indirect calls and thereby
show significant results were chosen and performed. Initially, VI'V’s performance
penalty showed to be 19.2% in the worst case. The authors then looked further
into the reasons behind the performance penalty. With the tool inserting ad-
ditional instructions, some penalty is not avoidable. By replacing the libvtv
functions with stubs, they measured the minimum overhead created by the in-
sertion of the additional check instructions at every call site. For the benchmarks
in question, the minimum penalty ranged from 1.0% to 4.7%. By using profile
guided optimizations of the GCC compiler which reduce the amount of virtual
calls and statically linking libvtv, the penalty of the complete version of VIV
could be reduced to 10.8%. Other benchmarks executing less virtual calls showed
even fewer performance penalties.

7.2 IFCC and FSan Performance

Like VTV, IFCC’s performance differs greatly according on the number of indi-
rect calls and the version of IFCC itself. Depending on whether the jump table
fits into one page in memory, either 14 bytes or 20 bytes of instructions are
added to every call site. FSan’s impact changes with the used optimization level
of the compiler, the authors found that it adds roughly 12 instructions per call
site. They compared the benchmark results for the same benchmarks used to
test VI'V’s performance to a version built with the bare Clang LTO. Both IFCC
and FSan showed a performance loss of about 4% in both Dromaeo and SPEC



CPU2006. IFCC’s operation mode (Single or Arity) made no significant differ-
ence. To conclude, the number of indirect calls is directly proportional to the
performance overhead.

7.3 Comparison to Prior Work

Regarding the SPEC Perl benchmark, IFCC outperforms prior work by far. In
terms of CFI security, Perl is very difficult to come by because it interprets
every instruction by making an indirect call. CFI implementations at the time
such as CCFIR by Zhang et al. [12], bin-CFI by Zhang and Sekar [13], Strato
by Zeng et al. [10], and MIP by Niu and Tan [7] hat performance penalties
ranging from 8.6% to 31.3% for this particular benchmark. IFCC however only
produces less than 2% overhead. As a reason, the authors refer to their focus
on forward edges only and little changes to the possibilities for the compiler to
apply optimizations. Concluding, the achieved level of security may be different,
but more in line with the expectations of such protections in real applications.

8 Conclusions and Discussion

This approach’s major improvement for CFI consists of the focus on producing
tools that can be used in real world environments. All three are compiler-based
mechanisms and have been implemented for a mainstream compiler. VTV se-
cures virtual calls in C++ by ensuring that a vtable is a vtable for the program
and also semantically correct for a specific call site; it has been added to GCC.
IFCC has been implemented for the LLVM compiler and checks whether the
target of an indirect call is one of the address-taken functions in the program.
FSan does not harden the final output binary but is a developer’s tool to check
for indirect calls whose function signature does not match its runtime target.
Each of the tools was able to produce working versions of the chromium browser
and provide a certain level of security. Although the AIR metric is questionable
as mentioned in 6, it shows that both VI'V and IFCC drastically limit an at-
tacker’s possibilities while keeping the performance overhead within the scope of
roughly 10% which was at the time better than other approaches. Most notably,
they allow dynamic loading and incremental compilation which is necessary for
productive work. Most other CFI tools were merely prototypes or introduced
these impractical restrictions.

The attack model is accurately described but passes some responsibility on
to other techniques. Most important, the authors focus on forward-edges in the
control flow only - so return adresses are not protected. VI'V and IFCC have
a few remaining security issues that can be dealt with by further optimization
and using a strong and reliable stack protection. All in all they provide at least
a good reason or a proper solution for their vulnerabilities. Additionally, perfect
security was not the point of the paper. Instead, the result should be a working
tool suitable for the real world that makes software more secure than before.



When testing the performance and security of their mechanisms, the au-
thors limit their testing to a single application - contrary to similar work. An
interesting addition to the results would be measuring the performance of more
than one applications and comparing the results. Different software may behave
differently and the impact on performance could be a lot higher than for the
Chromium browser. The performance is claimed to be better than prior work
but - especially compared to recent efforts - it is not as impressive either. The
worst case performance penalty showed to be almost 20% and the most effective
part of improving VTV’s performance was reducing the overall number of vir-
tual calls by compiler optimizations. This approach does not improve the actual
performance of VIV and thus seems more like beautified numbers. Still, other
CFT mechanisms at the time performed a lot worse which makes VTV still an
important improvement.

References

1. Bounov, D., Kc, R.G., Lerner, S.: Protecting c++ dynamic dispatch through vtable

interleaving. In: Symposium on Network and Distributed System Security (NDSS)
2016

2. éastrz), M., Costa, M., Martin, J.P., Peinado, M., Akritidis, P., Donnelly, A.,
Barham, P., Black, R.: Fast byte-granularity software fault isolation. In: Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems principles. pp.
45-58. ACM (2009)

3. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Niirnberger,
S., Sadeghi, A.R.: Mocfi: A framework to mitigate control-flow attacks on smart-
phones. In: NDSS (2012)

4. FErlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: Xfi: Software
guards for system address spaces. In: Proceedings of the 7th symposium on Oper-
ating systems design and implementation. pp. 75-88. USENIX Association (2006)

5. Haller, 1., Goktag, E., Athanasopoulos, E., Portokalidis, G., Bos, H.: Shrinkwrap:
Vtable protection without loose ends. In: Proceedings of the 31st Annual Computer
Security Applications Conference. pp. 341-350. ACM (2015)

6. Jang, D., Tatlock, Z., Lerner, S.: Safedispatch: Securing c++ virtual calls from
memory corruption attacks. In: Proceedings of NDSS 2014 (2014)

7. Niu, B., Tan, G.: Monitor integrity protection with space efficiency and separate
compilation. In: Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. pp. 199-210. ACM (2013)

8. Team, T.C.. Undefinedbehaviorsanitizer, clang 3.9 documentation (2016),
http://clang.llvim.org/docs/UndefinedBehaviorSanitizer.html, [Online; accessed 9-
July-2016]

9. Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide lifetime hyper-
visor control-flow integrity. In: 2010 IEEE Symposium on Security and Privacy.
pp. 380-395. IEEE (2010) )

10. Zeng, B., Tan, G., Erlingsson, U.: Strato: A retargetable framework for low-level
inlined-reference monitors. In: Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). pp. 369-382 (2013)

11. Zeng, B., Tan, G., Morrisett, G.: Combining control-flow integrity and static anal-
ysis for efficient and validated data sandboxing. In: Proceedings of the 18th ACM
conference on Computer and communications security. pp. 29-40. ACM (2011)



12. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
Security and Privacy (SP), 2013 IEEE Symposium on. pp. 559-573. IEEE (2013)

13. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13). pp. 337-352
(2013)



